Vai al contenuto principale
Coronavirus: aggiornamenti per la comunità universitaria / Coronavirus: updates for UniTo Community
Oggetto:

Analisi dei dati A(studenti A-L) / Data Analysis A (students A-L)

Oggetto:

Data Analysis A (students A-L)

Oggetto:

Anno accademico 2016/2017

Codice dell'attività didattica
PSI0375
Docenti
Luca Ricolfi (Titolare del corso)
Silvia Testa (Titolare del corso)
Corso di studi
Scienze e tecniche psicologiche
Anno
3° anno
Tipologia
Fondamentale
Crediti/Valenza
12
SSD dell'attività didattica
M-PSI/03 - psicometria
Modalità di erogazione
Tradizionale
Lingua di insegnamento
Italiano
Modalità di frequenza
Facoltativa
Tipologia d'esame
Orale
Prerequisiti
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

 

Scopo del corso è fornire una comprensione generale dell’Analisi dei dati, con particolare attenzione alle tecniche più usate dagli psicologi per affrontare i due problemi fondamentali della ricerca empirica in Psicologia: la misurazione mentale e l’imputazione causale.

The course aims to provide an advanced understanding of the core principles of Data Analysis.  Special attention will be placed on the most frequently used techniques for causal analysis and mental measurement.

Oggetto:

Risultati dell'apprendimento attesi

 

a) Conoscere: teoria dei tipi di scala, teoria della misurazione, teoria dei dati, principi di analisi dei dati, tecniche di assegnazione, tecniche multivariate;
b) Padroneggiare alcuni algoritmi di analisi dei dati, con particolare riguardo alle tecniche di misurazione e alle tecniche di analisi causale;
c) Discutere criticamente: un modello causale, la logica di un esperimento statistico, le proprietà psicometriche di uno strumento di misura, la struttura di uno spazio percettivo.

a) Knowledge and understanding: theory of scale types, measurement theory, data theory, principles of data analysis, history of data analysis, assignment techniques, multivariate techniques;
b) Applying knowledge and understanding, learning skills: handle causal imputation and measurement data analysis algorithms;
c) Making judgments, communication skills: critically discussing a causal model, the logic of a statistical experiment, the psychometric properties of a measurement device, and the structure of a perceptual space.

Oggetto:

Modalità di insegnamento

 

Lezione frontale ed esercitazioni carta e penna e/o con l’ausilio di un software statistico.

Lecture and pencil-paper and/or computer-based data analysis exercises

Oggetto:

Modalità di verifica dell'apprendimento

 

Esame orale sui testi (con eventuali esercizi carta, matita e calcolatrice) 

Oral examination based on textbooks (possibly with simple exercises)

Oggetto:

Programma

 

Il corso è suddiviso in quattro moduli.

  1. Fondamenti di analisi dei dati (teoria dei dati, tipi di scala, calcolo matriciale, principi di analisi dei dati)
  2. Tecniche di assegnazione (multidimensional scaling e multidimensional unfolding)
  3. Tecniche multivariate orientate all’analisi causale (regressione multipla, regressione multivariata, analisi della varianza).
  4. Tecniche multivariate a variabili nascoste (analisi fattoriale e singular value decomposition)

The course is divided into four units:

  1. Foundations of data analysis (data theory, scale types, matrix algebra, principles of data analysis);
  2. Assignment techniques (multidimensional scaling and multidimensional unfolding);
  3. Multivariate techniques for causal analysis (multiple regression, multivariate regression, analysis of variance);
  4. Multivariate techniques with latent variables (factor analysis and singular value decomposition).

Testi consigliati e bibliografia

Oggetto:

 

Testi di esame:

Luca Ricolfi, Matematica per le scienze umane, Milano, Mondadori Università, 2016 (in particolare i capitoli 2, 3, 6 e Appendice).

Luca Ricolfi, Manuale di analisi dei dati. Fondamenti, Bari, Laterza, 2002 (in particolare Introduzione e capitoli 2, 3, 4).

Luca Ricolfi, Silvia Testa, Analisi dei dati. Dispense del corso (a.a. 2016-17), copisteria Copy Digital, via Riberi 2 (Torino) e Centrocopie, via Principe Amedeo 29 (Torino).

 

Ulteriori letture consigliate:

M. Pastore, Analisi dei dati in psicologia, il Mulino, 2015.

R. Albano, Introduzione all'analisi fattoriale per la ricerca sociale, Libreria Stampatori, 2004.

Any textbook, or set of textbooks, about the same issues (to be agreed with the teacher)



Oggetto:

Note

 

Su appuntamento (inviare una mail a studio.ricolfi@gmail.com).

By appointment (send an Email to studio.ricolfi@gmail.com).

Oggetto:
Ultimo aggiornamento: 22/03/2017 12:16